一种基于机器学习的大规模电力异常数据检测方法及系统
摘要:
本发明公开了一种基于机器学习的大规模电力异常数据检测方法及系统。本发明的大规模电力异常数据检测方法,其包括步骤:1)输入待检测的用户数据记录;2)提取用户数据的相关特征;3)将特征输入多层感知机神经网络模型;4)输出检测概率,并基于最小化损失函数调整多层感知机神经网络模型参数。本发明采用能够探测出电力异常数据的多层感知机神经网络模型,基于海量的含有异常信息的采集数据,挖掘与数据发生采集异常存在因果关系的元素,对电力采集数据的异常状态进行探查,可以对通用类型的数据异常进行有效检测。
0/0