基于深度学习的无线信号检测与电磁干扰分类系统及方法
摘要:
本发明公开了一种基于深度学习的无线信号检测与电磁干扰分类系统及方法,利用分布式部署的频谱监测节点获得的观测数据,基于复值观测数据并行执行两类信号特征挖掘,得到无线信号检测数据集和电磁干扰分类数据集,并基于两类数据集并行训练两组卷积神经网络,再利用训练后的两组卷积神经网络分别检测无线信号和执行电磁干扰分类。有益效果:有利于提高无线信号检测和电磁干扰分类的准确性,对两类数据集执行泛化奇异值分解和空间划分,能消除加性噪声并抑制来自相邻信道的串扰,增强数据的真实性,且无线信号检测和电磁干扰分类并发进行,效率高、响应快。
0/0