摘要:
本发明公开了一种基于信息形式的强鲁棒传感器网络目标跟踪方法,不仅具有较强的鲁棒性,而且可使传感器网络在信息融合过程中拥有相对较小的计算负担。该方法以信息形式的变量替代目标的传统状态变量,将信息矩阵和信息状态矢量两种信息变量作为每一采样时刻数据处理的关注对象;又利用学生t分布分别对传感器观测过程、目标系统过程和目标状态的重尾非高斯特性进行建模,结合三阶球面‑相径容积规则对关于学生t分布的函数进行积分的近似数值计算,得到了信息空间下两种信息变量的递推估计形式。由于量测更新步骤中信息变量形式上的相对简洁,传感器网络中各节点的信息可以进行高效融合,最终输出目标的状态估计结果。
公开/授权文献
- CN109474892A 基于信息形式的强鲁棒传感器网络目标跟踪方法 公开/授权日:2019-03-15