一种基于卷积神经网络模型二次集成的黑色素瘤分类方法
摘要:
一种基于卷积神经网络模型二次集成的黑色素瘤分类方法,所述方法包括以下步骤:步骤1.基于随机掩盖来构建多个具有差异性的不同训练集;步骤2.卷积神经网络模型的构建及使用Focal loss作为模型的惩罚函数;步骤3.卷积神经网络模型的集成及二次集成。通过构建多个具有差异的训练集A、B、C等以及使用Resnet的50层卷积神经网络进行训练,最后根据模型的投票结果先进行一次集成,然后在一次集成的基础上再进行二次集成,旨在提高黑色素瘤自动识别分类的性能。
0/0