一种基于深度学习的变压器复杂工况识别方法
摘要:
本发明公开了一种基于深度学习的变压器复杂工况识别方法,包括以下步骤:S1:获取原始样本数据;S2:将原始样本数据构建为有类标、无类标和测试数据的数据集;S3:按照一定时间窗口对构建的数据集进行取窗与分组;S4:将窗内电压电流序列信号进行处理得到频谱数据;S5:对频谱数据进行循环神经网络训练;S6:对训练后的循环神经网络进行测试并优化;S7:将现场数据输入优化完成的循环神经网络,进行变压器复杂工况的识别和精确定位。该方法采用循环网络可对复杂混合故障进行准确判断与精确定位,提高了变压器复杂工况辨识的鲁棒性和实用水平。
公开/授权文献
0/0