一种远程监督的Dual-Attention关系分类方法及系统
摘要:
本发明涉及一种远程监督的Dual‑Attention关系分类方法及系统,包括:通过远程监督将知识库中的实体对对齐到新闻语料,构建实体对句子集合;基于词级别注意力机制的Bi‑LSTM模型将所述句子进行词级别的向量编码,得到所述句子的语义特征编码向量;基于句子级别注意力机制的Bi‑LSTM模型将所述句子的语义特征进行编码与去噪,得到句子集特征编码向量;将所述句子集特征编码向量与实体对翻译向量进行打包,对得到的包特征进行实体对的关系分类。本发明提供的技术方案降低了模型训练的噪声数据,避免人工标注数据及其造成的错误传递。运用开放域文本与大规模知识库进行实体对齐,有效解决了关系抽取的标注数据规模问题。
0/0