一种基于融合词性和语义信息的Skip-gram模型的情感分析方法
摘要:
本发明公开了一种基于融合词性和语义信息的Skip‑gram模型的情感分析方法,包括:数据预处理、词性信息建模、词向量表示、语义信息建模、情感分析五个步骤。其中数据预处理包括过滤、分词、词性标注;词性信息建模包含基于上下文对词性信息建模;词向量表示模块在融合词性信息的Skip‑gram模型上进行向量训练;语义信息建模模块包括融合情感语义信息的文本表示。同现有技术相比,本发明考虑了单词的词性信息及情感语义信息,且在对单词的词性信息建模和融合语义信息的基础上,充分利用单词的词性信息帮助词向量训练以及情感语义先验信息帮助文本向量的学习,使得表示的文本向量更加符合语言学特征,对于情感分析有很好的结果。
0/0