一种基于K‑MEANS、WORD2VEC的抽取关键词的方法
摘要:
本发明公开了一种基于K‑MEANS、WORD2VEC的抽取关键词的方法,该方法通过归纳全局语义和各分支主题,利用WORD2VEC算法构建出空间向量,使用 K‑means算法剔除模糊词,计算质心距,聚类评估后得到高质量的关键词,并且通过提升权重值,实现词库的动态优化,使关键词提取具备学习进化能力。本发明抽取的关键词能够体现文档的内部分类主题,每一个关键字能够很好地的体现该分类,具有最终关键词质量高,适应性更广泛,结果更加准确等特点。
公开/授权文献
0/0