一种基于Tucker分解的光谱张量降维及分类方法
摘要:
本发明公开了一种基于Tucker分解的光谱张量降维及分类方法,该方法将影响地物光谱特征的因素作为类内因素,并将类内因素、类与像素光谱分别作为一种模式构建成一个3阶张量,对其进行基于低秩张量分解的降维;对3阶张量进行低秩张量分解得到核张量类空间矩阵Uclass、类内因素空间矩阵Uwithin‑class和像素光谱矩阵Upixels;采用有监督分类器对无类别的测试高光谱图像d进行分类。本发明在模型建立后即可对高光谱图像进行分类,无需调整,而其他张量建模方法则需要反复设置、调整参数才能达到最佳分类效果;本发明将一类的所有像素光谱映射到同一系数向量上,从而将各种因素的影响减至最小,不但提高了分类精度,而且结果稳定。
公开/授权文献
0/0