一种基于奇异谱分解的旋转机械故障诊断方法
摘要:
本发明公开了一种基于奇异谱分解的旋转机械故障诊断方法,包括以下步骤:步骤1,在旋转机械的关键部件附近安装传感器进行测量,采集测量信号作为源信号;步骤2,利用奇异谱分解对源信号进行分解,得到若干个瞬时频率具有物理意义的奇异谱分量;步骤3,根据特征能量因子最大准则挑选蕴含丰富故障特征信息的分解分量作为主奇异谱分量;步骤4,对主奇异谱分量进行希尔伯特解调,获得相应的包络谱;步骤5,从包络谱中观察故障特征频率处是否存在明显峰值,从而实现旋转机械故障类型的准确判别。本发明简单易行,较其他现有技术相比能够实现更为精确的故障诊断。
公开/授权文献
0/0