基于改进RBF网络的风电机组超短期风功率预测方法
摘要:
本发明公开了一种基于改进RBF网络的风电机组超短期风功率预测方法,采用风电机组运行统计资料,合理选择对风功率输出有着密切影响的参数,如前一段时间的风速、风向、桨距角、风功率等物理量,使用人工神经网络——径向基函数网络(RBF)建立相关参数与风功率输出对应关系的模型;采用改进RBF网络方法对该模型进行修改,判断当前隐含层节点数是否满足精度要求,判断某个隐含层节点的输出在连续一段的学习中是否均小于某一值,实时在线修改隐含层节点个数,随预测进行不断增加新的学习样本,这种风功率预测方法精度高、速度快。
0/0