基于Gist特征与极限学习机的场景分类方法
摘要:
一种基于Gist特征与极限学习机的场景分类方法,先提取图像的Gist特征,采用Gabor小波对场景图像进行卷积操作,然后提取Gist向量作为场景图像的特征描述,将此特征描述用于场景分类当中。本发明利用Gist特征对图像产生一个综合的认知、综合描述了自然度,开放度,粗略度,展开度和崎岖度五种自然属性,相比较传统的场景分类方法可以避免根据各种实际情况设置不同的参数和门限。解决了传统分类中在变化情况较多条件下必须不断调整分类门限的技术难题,运算速度快且具有很好的泛化能力,扩展性很好,随着分类情况复杂度提高、规模的扩大表现出来的优越性越好。
公开/授权文献
0/0