基于高斯混合模型的即时学习脱丁烷塔软测量建模方法
摘要:
本发明公开了一种基于高斯混合模型(GMM)的即时学习脱丁烷塔软测量建摸方法,该方法首先训练过程高斯混合模型,获取各高斯成分参数,建立相应的子模型;然后通过贝叶斯方法计算待预测样本属于各高斯成分的后验概率,以及各高斯成分下局部马氏距离,从而得到加权的样本相似度定义指标;最后采用新的相似度指标合理选择相似样本用于局部建模。本发明不仅能够很好的处理过程非高斯性和非线性,而且充分提取待预测样本特性,更为合理的选择相似样本用于即时学习建摸,有利于提高模型预测精度。
0/0